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epistemic uncertainty in predictive models. Our specific contributions are: A

1. We introduce a novel metric based on NN-generated prediction intervals (Pls) to
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quantify potential levels of epistemic uncertainty.
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 Epistemic uncertainty (reducible): Due to the “lack of knowledge” of ft about the
underlying function.

= Aleatoric uncertainty (irreducible): Due to the random nature of the data.

= Objective: Identify ngc)q = {x¢1,..
locations for iteration ¢t + 1.
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b L . . . . Experimental Results
* Xaeq i chosen to minimize the epistemic uncertainty across X (Fig. 1).
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Figure 2. Potential epistemic uncertainty Qy(x,).

Conclusions

Batch Sampling 1. We introduced ASPINN, an AS technique designed to reduce epistemic uncertainty

. across an input domain using Pls generated by NNs.
Selection of the k-th element of the ¢-th batch, x; . P . . g 5 . 4 . .
’ 2. The novel potential epistemic uncertainty metric, central to ASPINN, provided a
Xtk = a;ggwfx ar(Xp | Xt 1:5-1)- robust basis for guiding the sampling process.

3. The effectiveness of our approach was demonstrated through its consistent ability
to achieve faster convergence rates with lower and more stable learning curves
compared to other methods.

The acquisition function a; estimates the reduction in the total potential epistemic
uncertainty across X when making an observation at x,,.
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